
Lecture 25

Radiation by a Hertzian Dipole

Radiation of electromagnetic field is of ultimate importance for wireless communication sys-
tems. The first demonstration of the wave nature of electromagnetic field was by Heinrich
Hertz in 1888 [18]. Guglielmo Marconi, after much perserverence with a series of experi-
ments, successfully transmitted wireless radio signal from Cornwall, England to Newfound-
land, Canada in 1901 [126]. Hence, radiation by arbitrary sources is an important problem
for antennas and wireless communications. We will start with studying the Hertzian dipole
which is the simplest of radiation sources we can think of.

25.1 History

The original historic Hertzian dipole experiment is shown in Figure 25.1. It was done in 1887
by Heinrich Hertz [18]. The schematics for the original experiment is also shown in Figure
25.2.

A metallic sphere has a capacitance in closed form with respect to infinity or a ground
plane. Hertz could use those knowledge to estimate the capacitance of the sphere, and also,
he could estimate the inductance of the leads that are attached to the dipole, and hence, the
resonance frequency of his antenna. The large sphere is needed to have a large capacitance,
so that current can be driven through the wires. As we shall see, the radiation strength of
the dipole is proportional to p = ql the dipole moment.
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Figure 25.1: Hertz’s original experiment on a small dipole (courtesy of Wikipedia [18]).

Figure 25.2: More on Hertz’s original experiment on a small dipole (courtesy of Wikipedia
[18])
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25.2 Approximation by a Point Source

Figure 25.3: Schematics of a small Hertzian dipole.

Figure 25.3 is the schematic of a small Hertzian dipole resembling the original dipole that
Hertz made. Assuming that the spheres at the ends store charges of value q, and l is the
effective length of the dipole, then the dipole moment p = ql. The charge q is varying in time
harmonically because it is driven by the generator. Since

dq

dt
= I,

we have

Il =
dq

dt
l = jωql = jωp (25.2.1)

for this Hertzian dipole.
A Hertzian dipole is a dipole which is much smaller than the wavelength under consid-

eration so that we can approximate it by a point current distribution, or a current density,
mathematically given by [31,39]

J(r) = ẑIlδ(x)δ(y)δ(z) = ẑIlδ(r) (25.2.2)

The dipole is as shown in Figure 25.3 schematically. As long as we are not too close to the
dipole so that it does not look like a point source anymore, the above is a good mathematical
model for describing a Hertzian dipole.

We have learnt previously that the vector potential is related to the current as follows:

A(r) = µ

�
dr′J(r′)

e−jβ|r−r
′|

4π|r− r′|
(25.2.3)

Since the current is a 3D delta function in space, using the sifting property of a delta function,
the corresponding vector potential is given by

A(r) = ẑ
µIl

4πr
e−jβr (25.2.4)



246 Electromagnetic Field Theory

Since the vector potential A(r) is cylindrically symmetric, the corresponding magnetic field
is obtained, using cylindrical coordinates, as

H =
1

µ
∇×A =

1

µ

(
ρ̂

1

ρ

∂

∂φ
Az − φ̂

∂

∂ρ
Az

)
(25.2.5)

where ∂
∂φ = 0, r =

√
ρ2 + z2. In the above, we have used the chain rule that

∂

∂ρ
=
∂r

∂ρ

∂

∂r
=

ρ√
ρ2 + z2

∂

∂r
=
ρ

r

∂

∂r
.

As a result,

H = −φ̂ρ
r

Il

4π

(
− 1

r2
− jβ 1

r

)
e−jβr (25.2.6)

Figure 25.4: Spherical coordinates are used to calculate the fields of a Hertzian dipole.

In spherical coordinates, ρ
r = sin θ, and (25.2.6) becomes [31]

H = φ̂
Il

4πr2
(1 + jβr)e−jβr sin θ (25.2.7)

The electric field can be derived using Maxwell’s equations.

E =
1

jωε
∇×H =

1

jωε

(
r̂

1

r sin θ

∂

∂θ
sin θHφ − θ̂

1

r

∂

∂r
rHφ

)
(25.2.8)

=
Ile−jβr

jωε4πr3

[
r̂2 cos θ(1 + jβr) + θ̂ sin θ(1 + jβr − β2r2)

]
(25.2.9)
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25.2.1 Case I. Near Field, βr � 1

Since βr � 1, retardation effect within this short distance from the point dipole can be
ignored. Also, we let βr → 0, and keeping the largest terms (or leading order terms in math
parlance), then

E ∼=
p

4πεr3
(r̂2 cos θ + θ̂ sin θ), βr � 1 (25.2.10)

η0H� E, when βr � 1 (25.2.11)

where p = ql is the dipole moment.1 The above implies that in the near field, the electric
field dominates over the magnetic field.

In the above, βr could be made very small by making r
λ small or by making ω → 0. The

above is like the static field of a dipole.
Another viewpoint is that in the near field, the field varies rapidly, and space derivatives

are much larger than the time derivative.2

For instance,
∂

∂x
� ∂

c∂t
Alternatively, we can say that the above is equivalent to

∂

∂x
� ω

c

or that

∇2 − 1

c2
∂2

∂t2
≈ ∇2

In other words, static theory prevails over dynamic theory. The above approximations are
consistent with that the retardation effect is negligible over this lengthscale.

25.2.2 Case II. Far Field (Radiation Field), βr � 1

In this case, retardation effect is important. In other words, phase delay cannot be ignored.

E ∼= θ̂jωµ
Il

4πr
e−jβr sin θ (25.2.12)

and

H ∼= φ̂jβ
Il

4πr
e−jβr sin θ (25.2.13)

Note that Eθ
Hφ

= ωµ
β =

√
µ
ε = η0. Here, E and H are orthogonal to each other and are both

orthogonal to the direction of propagation, as in the case of a plane wave. Or in a word, a
spherical wave resembles a plane wave in the far field approximation.

1Here, η0 =
√
µ/ε. We multiply H by η0 so that the quantities we are comparing have the same unit.

2This is in agreement with our observation that electromagnetic fields are great contortionists: They will
deform themselves to match the boundary first before satisfying Maxwell’s equations. Since the source point
is very small, the fields will deform themselves so as to satisfy the boundary conditions near to the source
region. If this region is small compared to wavelength, the fields will vary rapidly over a small lengthscale
compared to wavelength.
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25.3 Radiation, Power, and Directive Gain Patterns

The time average power flow is given by

〈S〉 =
1

2
<e[E×H∗] = r̂

1

2
η0 |Hφ|2 = r̂

η0

2

(
βIl

4πr

)2

sin2 θ (25.3.1)

The radiation field pattern of a Hertzian dipole is the plot of |E| as a function of θ at a
constant r. Hence, it is proportional to sin θ, and it can be proved that it is a circle.

Figure 25.5: Radiation field pattern of a Hertzian dipole. It can be shown that the pattern
is a circle.

The radiation power pattern is the plot of 〈Sr〉 at a constant r.
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Figure 25.6: Radiation power pattern of a Hertzian dipole which is also the same as the
directive gain pattern.

The total power radiated by a Hertzian dipole is given by

P =

� 2π

0

dφ

� π

0

dθr2 sin θ〈Sr〉 = 2π

� π

0

dθ
η0

2

(
βIl

4π

)2

sin3 θ (25.3.2)

Since � π

0

dθ sin3 θ = −
� −1

1

(d cos θ)[1− cos2 θ] =

� 1

−1

dx(1− x2) =
4

3
(25.3.3)

then

P =
4

3
πη0

(
βIl

4π

)2

=
η0(βIl)2

12π
(25.3.4)

The directive gain of an antenna, G(θ, φ), is defined as [31]

G(θ, φ) =
〈Sr〉
〈Sav〉

=
〈Sr〉
P

4πr2

(25.3.5)

where

〈Sav〉 =
P

4πr2

is the power density if the power P were uniformly distributed over a sphere of radius r.
Substituting (25.3.1) and (25.3.4) into the above, we have

G(θ, φ) =

η0
2

(
βIl
4πr

)2

sin2 θ

1
4πr2

4
3η0π

(
βIl
4π

)2 =
3

2
sin2 θ (25.3.6)
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The peak of G(θ, φ) is known as the directivity of an antenna. It is 1.5 in the case of a
Hertzian dipole. If an antenna is radiating isotropically, its directivity is 1. Therefore, the
lowest possible values for the directivity of an antenna is 1, whereas it can be over 100 for
some antennas like reflector antennas (see Figure 25.7). A directive gain pattern is a plot
of the above function G(θ, φ) and it resembles the radiation power pattern.

Figure 25.7: The gain of a reflector antenna can be increased by deflecting the power radiated
in the desired direction by the use of a reflector (courtesy of racom.eu).

If the total power fed into the antenna instead of the total radiated power is used in the
denominator of (25.3.5), the ratio is known as the power gain or just gain. The total power
fed into the antenna is not equal to the total radiated power because there could be some loss
in the antenna system like metallic loss.

25.3.1 Radiation Resistance

The radiation resistance Rr is the effective resistance that will dissipate the same power
as the radiation power P when a current I flows through the resistor. Hence, it is defined by
P = 1

2I
2Rr, and we have [31]

Rr =
2P

I2
= η0

(βl)2

6π
≈ 20(βl)2, where η0 = 377 ≈ 120π Ω (25.3.7)

For example, for a Hertzian dipole with l = 0.1λ, Rr ≈ 8Ω.
The above assumes that the current is uniformly distributed over the length of the Hertzian

dipole. This is true if there are two charge reservoirs at its two ends. For a small dipole with
no charge reservoir at the two ends, the currents have to vanish at the tip of the dipole as
shown in Figure 25.8. The effective length of an equivalent Hertzian dipole for the dipole
with triangular distribution is half of its actual length due to the manner the currents are
distributed.3 Such a formula can be used to estimate the radiation resistance of a dipole.

3As shall be shown, when the dipole is short, the details of the current distribution is inessential in
determining the radiation field. It is the area under the current distribution that is important.
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For example, a half-wave dipole does not have a triangular current distribution a sinusoidal
one as shown in Figure 25.9. Nevertheless, we approximate the current distribution of a half-
wave dipole with a triangular distribution, and apply the above formula. We pick a = λ

2 , and

if we use leff = λ
4 in (25.3.7), we have

Rr ≈ 50Ω (25.3.8)

Figure 25.8: The current pattern on a short dipole can be approximated by a triangle since
the current has to vanish at the end points of the short dipole. Furthermore, this dipole can
be approximated by an effective Hertzian dipole half its length.

The true current distribution on a half-wave dipole resembles that shown in Figure 25.9.
The current is zero at the end points, but the current has a more sinusoidal-like distribu-
tion like that in a transmission line. Hence, a half-wave dipole is not much smaller than a
wavelength and does not qualify to be a Hertzian dipole. Furthermore, the current distribu-
tion on the half-wave dipole is not triangular in shape as above. A more precise calculation
shows that Rr = 73Ω for a half-wave dipole [49]. This also implies that a half-wave dipole
with sinusoidal current distribution is a better radiator than a dipole with triangular current
distribution.

In fact, one can think of a half-wave dipole as a flared, open transmission line. In the
beginning, this flared open transmission line came in the form of biconical antennas which are
shown in Figure 25.10 [127]. If we recall that the characteristic impedance of a transmission
line is

√
L/C, then as the spacing of the two metal pieces becomes bigger, the equivalent

characteristic impedance gets bigger. Therefore, the impedance can gradually transform
from a small impedance like 50 Ω to that of free space, which is 377 Ω. This impedance
matching helps mitigate reflection from the ends of the flared transmission line, and enhances
radiation.

Because of the matching nature of bicone antennas, they have a broader bandwidth, and
are important in UWB (ultra-wide band) antennas [128].



252 Electromagnetic Field Theory

Figure 25.9: A current distribution on a half-wave dipole (courtesy of electronics-notes.co).

Figure 25.10: A bicone antenna can be thought of as a transmission line with gradually
changing characteristic impedance. This enhances impedance matching and the radiation of
the antenna (courtesy of antennasproduct.com).


